Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(15): 18434-18448, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579182

RESUMO

The poor solubility of clotrimazole in the aqueous medium and the uncontrolled removal of the drug-loaded suppository content limit its effectiveness in the treatment of vulvovaginal candidiasis. We present here the aqueous formulations of clotrimazole in the form of non-Newtonian structured fluids, i.e., Bingham plastic or pseudoplastic fluids constructed of hyperbranched polyglycidol, HbPGL, with a hydrophobized core with aryl groups such as phenyl or biphenyl. The amphiphilic constructs were obtained by the modification of linear units containing monohydroxyl groups with benzoyl chloride, phenyl isocyanate, and biphenyl isocyanate, while the terminal 1,2-diol groups in the shell were protected during the modification step, followed by their deprotection. The encapsulation of clotrimazole within internally hydrophobized HbPGLs using a solvent evaporation method followed by water addition resulted in structured fluids formation. Detailed Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analyses performed for aryl-HbPGLs with clotrimazole revealed the difference in drug compatibility among polymers. Clotrimazole in biphenyl-enriched HbPGL, unlike phenyl derivatives, was molecularly distributed in both the dry and the hydrated states, resulting in transparent formulations. The shear-thinning properties of the obtained fluid formulations make them injectable and thus suitable for the intravaginal application. Permeability tests performed with the usage of the Franz diffusion cell showed a 5-fold increase in the permeability constant of clotrimazole compared to drugs loaded in a commercially available disposable tablet and a 50-fold increase of permeability in comparison to the aqueous suspension of clotrimazole. Furthermore, the biphenyl-modified HbPGL-based drug liquid showed enhanced antifungal activity against both Candida albicans and Candida glabrata that was retained for up to 7 days, in contrast to the phenyl-HbPGL derivatives and the tablet. With their simple formulation, convenient clotrimazole/biphenyl-HbPGL formulation strategy, rheological properties, and enhanced antifungal properties, these systems are potential antifungal therapeutics for gynecological applications. This study points in the synthetic direction of improving the solubility of poorly water-soluble aryl-enriched pharmaceuticals.


Assuntos
Antifúngicos , Compostos de Bifenilo , Clotrimazol , Propilenoglicóis , Clotrimazol/química , Antifúngicos/química , Disponibilidade Biológica , Solubilidade , Água , Comprimidos
2.
Chemistry ; : e202400177, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644348

RESUMO

We report an idea for the synthesis of oligopeptides using a solvent-free ball milling approach. Our concept is inspired by block play, in which it is possible to construct different objects using segments (blocks) of different sizes and lengths. We prove that by having a library of short peptides and employing the ball mill mechanosynthesis (BMMS) method, peptides can be easily coupled to form different oligopeptides with the desired functional and biological properties. Optimizing the BMMS process we found that the best yields we obtained when TBTU and cesium carbonate were used as reagents. The role of Cs2CO3 in the coupling mechanism was followed on each stage of synthesis by 1H, 13C and 133Cs NMR employing Magic Angle Spinning (MAS) techniques. It was found that cesium carbonate acts not only as a base but is also responsible for the activation of substrates and intermediates. The unique information about the BMMS mechanism is based on the analysis of 2D NMR data. The power of BMMS is proved by the example of different peptide combinations, 2+2, 3+2, 4+2, 5+2 and 4+4. The tetra-, penta-, hexa-, hepta- and octapeptides obtained under this project were fully characterized by MS and NMR techniques.

3.
ACS Appl Mater Interfaces ; 16(12): 14605-14625, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488848

RESUMO

In the face of severe side effects of systemic chemotherapy used in cervical cancer, topical selective drug carriers with long-lasting effects are being sought. Hydrogels are suitable platforms, but their use is problematic in the case of delivery of hydrophobic drugs with anticancer activity. Herein, hydrogels constructed of unimolecular micelles displaying enhanced solubilization of aromatic lipophilic bioactive compounds are presented. Star-shaped poly(benzyl glycidyl ether)-block-poly(glycidyl glycerol ether) with an aryl-enriched core show high encapsulation capacity of poor water-soluble nifuratel and clotrimazole. Nifuratel attained selectivity against cervical cancer cells, whereas clotrimazole preserved its original selectivity. The combination of unimolecular micelles loaded with both drugs provided synergism; however, they were still selective against cervical cancer cells. The cross-linking of drug-loaded unimolecular micelles via dynamic boronic esters provided injectable and self-healable hydrogel drug carriers also displaying synergistic anticancer activity, suitable for intravaginal administration and assuring the effective coverage of the afflicted tissue area and efficient tissue permeability with hydrophobic bioactive compounds. Here, we show that the combination of star-shaped polyether amphiphiles and boronic ester cross-linking chemistry provides a new strategy for obtaining hydrogel platforms suitable for efficient hydrophobic drug delivery.


Assuntos
Nifuratel , Neoplasias do Colo do Útero , Feminino , Humanos , Micelas , Neoplasias do Colo do Útero/tratamento farmacológico , Hidrogéis/química , Clotrimazol , Portadores de Fármacos/química , Polietilenoglicóis/química
4.
ACS Omega ; 9(8): 9348-9356, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434886

RESUMO

Modified nucleotides are commonly used in molecular biology as substrates or inhibitors for several enzymes but also as tools for the synthesis of modified DNA and RNA fragments. Introduction of modification into RNA, such as phosphorothioate (PS), has been demonstrated to provide higher stability, more effective transport, and enhanced activity of potential therapeutic molecules. Hence, in order to achieve widespread use of RNA molecules in medicine, it is crucial to continuously refine the techniques that enable the effective introduction of modifications into RNA strands. Numerous analogues of nucleotides have been tested for their substrate activity with the T7 RNA polymerase and therefore in the context of their utility for use in in vitro transcription. In the present studies, the substrate preferences of the T7 RNA polymerase toward ß,γ-hypophospho-modified ATP derivatives for the synthesis of unmodified RNA and phosphorothioate RNA (PS) are presented. The performed studies revealed the stereoselectivity of this enzyme for α-thio-ß,γ-hypo-ATP derivatives, similar to that for α-thio-ATP. Additionally, it is demonstrated herein that hypodiphosphoric acid may inhibit in vitro transcription catalyzed by T7 RNA polymerase.

5.
Molecules ; 28(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375141

RESUMO

Hetero Diels-Alder (HDA) reactions with the participation of E-2-aryl-1-cyano-1-nitroethenes and methylenecyclopentane were evaluated on the basis of experimental as well as quantumchemical data. It was found that contrary to most known HDA reactions, title processes are realised under non-catalytic conditions and with full regiocontrol. The DFT study shows, without any doubt, the polar but single-step reaction mechanism. Deeper exploration using Bonding Evolution Theory (BET) techniques gives a clear image of the sequences of electron density reorganisation along the reaction coordinate. The first C4-C5 bond is created in phase VII by merging two monosynaptic basins, while the second O1-C6 bond is created in the last phase by a donation of the nonbonding electron density of O1 to C6. Based on the research, we can conclude that the analysed reaction proceeds according to a two-stage one-step mechanism.

6.
Pharmaceutics ; 15(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37111719

RESUMO

The applicability of different solvent-free approaches leading to the amorphization of active pharmaceutical ingredients (APIs) was tested. Ethenzamide (ET), an analgesic and anti-inflammatory drug, and two ethenzamide cocrystals with glutaric acid (GLU) and ethyl malonic acid (EMA) as coformers were used as pharmaceutical models. Calcinated and thermally untreated silica gel was applied as an amorphous reagent. Three methods were used to prepare the samples: manual physical mixing, melting, and grinding in a ball mill. The ET:GLU and ET:EMA cocrystals forming low-melting eutectic phases were selected as the best candidates for testing amorphization by thermal treatment. The progress and degree of amorphousness were determined using instrumental techniques: solid-state NMR spectroscopy, powder X-ray diffraction, and differential scanning calorimetry. In each case, the API amorphization was complete and the process was irreversible. A comparative analysis of the dissolution profiles showed that the dissolution kinetics for each sample are significantly different. The nature and mechanism of this distinction are discussed.

7.
J Mater Chem B ; 11(24): 5552-5564, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-36877094

RESUMO

Clotrimazole, a hydrophobic drug routinely used in the treatment of vaginal candidiasis, also shows antitumor activity. However, its use in chemotherapy has been unsuccessful to date due to its low solubility in aqueous media. In this work, new unimolecular micelles based on polyether star-hyperbranched carriers of clotrimazole are presented that can enhance solubility, and consequently the bioavailability, of clotrimazole in water. The amphiphilic constructs consisting of a hydrophobic poly(n-alkyl epoxide) core and hydrophilic corona of hyperbranched polyglycidol were synthesized in a three-step anionic ring-opening polymerization of epoxy monomers. The synthesis of such copolymers, however, was only possible by incorporating a linker to facilitate the elongation of the hydrophobic core with glycidol. Unimolecular micelles-clotrimazole formulations displayed significantly increased activity against human cervical cancer HeLa cells compared to the free drug, along with a weak effect on the viability of the normal dermal microvascular endothelium cells HMEC1. This selective activity of clotrimazole on cancer cells with little effect on normal cells was a result of the fact that clotrimazole targets the Warburg effect in cancer cells. Flow cytometric analysis revealed that the encapsulated clotrimazole significantly blocks the progression of the HeLa cycle in the G0/G1 phase and induces apoptosis. In addition, the ability of the synthesized amphiphilic constructs to form a dynamic hydrogel was demonstrated. Such a gel facilitates the delivery of drug-loaded single-molecule micelles to the affected area, where they can form a continuous, self-healing layer.


Assuntos
Clotrimazol , Micelas , Humanos , Clotrimazol/farmacologia , Células HeLa , Polímeros/química
8.
Chemphyschem ; 24(7): e202200884, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36507917

RESUMO

In this work, we present results for loading of well-defined binary systems (cocrystal, solid solution) and untreated materials (physical mixtures) into the voids of MCM-41 mesoporous silica particles employing three different filling methods. The applied techniques belong to the group of "wet methods" (diffusion supported loading - DiSupLo) and "solvent-free methods" (mechanical ball-mill loading - MeLo, thermal solvent free - TSF). As probes for testing the guest1-guest2 interactions inside the MCM-41 pores we employed the benzoic acid (BA), perfluorobenzoic acid (PFBA), and 4-fluorobenzoic acid (4-FBA). The guests intermolecular contacts and phase changes were monitored employing magic angle spinning (MAS) NMR Spectroscopy techniques and powder X-ray diffraction (PXRD). Since mesoporous silica materials are commonly used in drug delivery system research, special attention has been paid to factors affecting guest release kinetics. It has been proven that not only the content and composition of binary systems, but also the loading technique have a strong impact on the rate of guests release. Innovative methods of visualizing differences in release kinetics are presented.

9.
Materials (Basel) ; 15(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36363174

RESUMO

The first examples of [3+2] cycloaddition reactions between 3,3,3-tribromo-1-nitroprop-1-ene (TBMN) were explored on the basis of experimental and theoretical approaches. It was found that reactions involving TBMN and diarylnitrones realized with full regio- and stereoselectivity lead to respective 3,4-cis-4,5-trans-4-nitroisoxazolidines. The regioselecticity and the molecular mechanism of title processes was analyzed on the basis of the advanced DFT computational study.

10.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296539

RESUMO

The understanding of the mechanism of Topo I inhibition by organic ligands is a crucial source of information that has led to the design of more effective and safe pharmaceuticals in oncological chemotherapy. The vast number of inhibitors that have been studied in this respect over the last decades have enabled the creation of a concept of an 'interfacial inhibitor', thereby describing the machinery of Topo I inhibition. The central module of action of this machinery is the interface of a Topo I/DNA/inhibitor ternary complex. Most of the 'interfacial inhibitors' are primarily kinetic inhibitors that form molecular complexes with an "on-off" rate timing; therefore, all of the contacts between the inhibitor and both the enzyme and the DNA are essential to keep the complex stable and reduce the "off rate". To test this hypothesis, we designed the compound using a C-9-(N-(2'-hydroxyethyl)amino)methyl substituent in an SN38 core, with a view that a flexible substituent may bind inside the nick of a model of the DNA and stabilize the complex, leading to a reduction in the "off rate" of a ligand in a potential ternary complex in vivo. Using docking analysis and molecular dynamics, free energy calculations on the level of the MM-PBSA and MM-GBSA model, here we presented the in silico-calculated structure of a ternary complex involving the studied compound 1. This confirmed our suggestion that compound 1 is situated in a groove of the nicked DNA model in a few conformations. The number of hydrogen bonds between the components of a ternary complex was established, which strengthens the complex and supports our view. The docking analysis and free energy calculations for the receptor structures which were obtained in the MD simulations of the ternary complex 1/DNA/Topo I show that the binding constant is stronger than it was for similar complexes with TPT, CPT, and SN38, which are commonly considered as strong Topo I inhibitors. The binary complex structure 1/DNA was calculated and compared with the experimental results of a complex that was in a solution. The analysis of the cross-peaks in NOESY spectra allowed us to assign the dipolar interactions between the given protons in the calculated structures. A DOSY experiment in the solution confirmed the strong binding of a ligand in a binary complex, having a Ka of 746 mM-1, which was compared with a Ka of 3.78 mM-1 for TPT. The MALDI-ToF MS showed the presence of the biohybrid, thus evidencing the occurrence of DNA alkylation by compound 1. Because of it having a strong molecular complex, alkylation is the most efficient way to reduce the "on-off" timing as it acts as a tool that causes the cog to brake in a working gear, and this is this activity we want to highlight in our contribution. Finally, the Topo I inhibition test showed a lower IC50 of the studied compound than it did for CPT and SN38.


Assuntos
Camptotecina , Prótons , Ligantes , Inibidores da Topoisomerase I/farmacologia , Inibidores da Topoisomerase I/química , DNA Topoisomerases Tipo I/metabolismo , Inibidores da Topoisomerase , DNA/metabolismo , Preparações Farmacêuticas
11.
Biomacromolecules ; 23(10): 4203-4219, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36073031

RESUMO

Injectable, self-healing hydrogels with enhanced solubilization of hydrophobic drugs are urgently needed for antimicrobial intravaginal therapies. Here, we report the first hydrogel systems constructed of dynamic boronic esters cross-linking unimolecular micelles, which are a reservoir of antifungal hydrophobic drug molecules. The selective hydrophobization of hyperbranched polyglycidol with phenyl units in the core via ester or urethane bonds enabled the solubilization of clotrimazole, a water-insoluble drug of broad antifungal properties. The encapsulation efficiency of clotrimazole increases with the degree of the HbPGL core modification; however, the encapsulation is more favorable in the case of urethane derivatives. In addition, the rate of clotrimazole release was lower from HbPGL hydrophobized via urethane bonds than with ester linkages. In this work, we also revealed that the hydrophobization degree of HbPGL significantly influences the rheological properties of its hydrogels with poly(acrylamide-ran-2-acrylamidephenylboronic acid). The elastic strength of networks (GN) and the thermal stability of hydrogels increased along with the degree of HbPGL core hydrophobization. The degradation of the hydrogel constructed of the neat HbPGL was observed at approx. 40 °C, whereas the hydrogels constructed on HbPGL, where the monohydroxyl units were modified above 30 mol %, were stable above 50 °C. Moreover, the flow and self-healing ability of hydrogels were gradually decreased due to the reduced dynamics of macromolecules in the network as an effect of increased hydrophobicity. The changes in the rheological properties of hydrogels resulted from the engagement of phenyl units into the intermolecular hydrophobic interactions, which besides boronic esters constituted additional cross-links. This study demonstrates that the HbPGL core hydrophobized with phenyl units at 30 mol % degrees via urethane linkages is optimal in respect of the drug encapsulation efficiency and rheological properties including both self-healable and injectable behavior. This work is important because of a proper selection of a building component for the construction of a therapeutic hydrogel platform dedicated to the intravaginal delivery of hydrophobic drugs.


Assuntos
Ginecologia , Hidrogéis , Acrilamidas , Antifúngicos/farmacologia , Clotrimazol/farmacologia , Ésteres/química , Hidrogéis/química , Micelas , Uretana , Água
12.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887319

RESUMO

The 5-substituted 2-selenouridines are natural components of the bacterial tRNA epitranscriptome. Because selenium-containing biomolecules are redox-active entities, the oxidation susceptibility of 2-selenouridine (Se2U) was studied in the presence of hydrogen peroxide under various conditions and compared with previously reported data for 2-thiouridine (S2U). It was found that Se2U is more susceptible to oxidation and converted in the first step to the corresponding diselenide (Se2U)2, an unstable intermediate that decomposes to uridine and selenium. The reversibility of the oxidized state of Se2U was demonstrated by the efficient reduction of (Se2U)2 to Se2U in the presence of common reducing agents. Thus, the 2-selenouridine component of tRNA may have antioxidant potential in cells because of its ability to react with both cellular ROS components and reducing agents. Interestingly, in the course of the reactions studied, we found that (Se2U)2 reacts with Se2U to form new 'oligomeric nucleosides' as linear and cyclic byproducts.


Assuntos
Nucleosídeos , Selênio , Indicadores e Reagentes , Compostos Organosselênicos , Oxirredução , RNA de Transferência/metabolismo , Substâncias Redutoras , Uridina/análogos & derivados , Uridina/metabolismo
13.
Cells ; 11(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35563829

RESUMO

The bacterial enzyme tRNA 2-selenouridine synthase (SelU) is responsible for the conversion of 5-substituted 2-thiouridine (R5S2U), present in the anticodon of some bacterial tRNAs, into 5-substituted 2-selenouridine (R5Se2U). We have already demonstrated using synthetic RNAs that transformation S2U→Se2U is a two-step process, in which the S2U-RNA is geranylated and the resulting geS2U-RNA is selenated. Currently, the question is how SelU recognizes its substrates and what the cellular pathway of R5S2U→R5Se2U conversion is in natural tRNA. In the study presented here, we characterized the SelU substrate requirements, identified SelU-associated tRNAs and their specific modifications in the wobble position. Finally, we explained the sequence of steps in the selenation of tRNA. The S2U position within the RNA chain, the flanking sequence of the modification, and the length of the RNA substrate, all have a key influence on the recognition by SelU. MST data on the affinity of SelU to individual RNAs confirmed the presumed process. SelU binds the R5S2U-tRNA and then catalyzes its geranylation to the R5geS2U-tRNA, which remains bound to the enzyme and is selenated in the next step of the transformation. Finally, the R5Se2U-tRNA leaves the enzyme and participates in the translation process. The enzyme does not directly catalyze the R5S2U-tRNA selenation and the R5geS2U-tRNA is the intermediate product in the linear sequence of reactions.


Assuntos
Escherichia coli , RNA de Transferência , Bactérias/metabolismo , Escherichia coli/metabolismo , Compostos Organosselênicos , RNA de Transferência/genética , Especificidade por Substrato , Sulfurtransferases , Uridina/análogos & derivados
14.
Cell Physiol Biochem ; 55(5): 569-589, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34612026

RESUMO

BACKGROUND/AIMS: Inflammation is the body's natural response to stress in the broadest sense. The regulatory mechanisms that control this process, some of which are still unclear, are needed to balance the immune response, but also when insufficient, can cause immunodeficiency resulting in infection, cancer, neurodegeneration or other serious disorders. In this study, we focused on defining the role of lysine-specific demethylase 1 (LSD1), an enzyme involved in modulating the methylation state of lysine, including histone and non-histone proteins, in shaping the inflammatory profile of endothelial cells. METHODS: To determine the role of LSD1 in the inflammatory response of ECs, cells were stimulated with lipopolysaccharide (100 ng/ml LPS) in the presence and absence of an LSD1 inhibitor (2-PCPA). A transcription model of LSD1 deficient cells (HMEC-1 LSD1 KD) obtained by lentiviral shRNA transduction was also used. The indicated cellular models were analyzed by gene profiling, monitoring of p65 shuttling by Western blotting and immunofluorescence staining. Also chromatin immunoprecipitation (ChIP) was performed to identify the interactions between selected: IL-6/p65 and LSD1. RESULTS: Analysis of both experimental models revealed an altered inflammatory response following both LSD1 inhibition and LSD1 silencing. We observed decreased U-937 monocytes recruitment to LPS-activated endothelial cells and decreased extracellular secretion of many proinflammatory cytokines, also confirmed at the transcript level by RT-qPCR. Monitoring of the LPS-induced p65 translocation revealed inhibition of the NF-kB subunit in LSD1 KD vs nonT as well as due to pretreatment of 2-PCPA cells. Gene profiling performed with RNA microarrays confirmed the obtained biochemical data at the transcript level. CONCLUSION: In conclusion, the conducted studies showed a proinflammatory profile of LSD1 activity in endothelial cells, revealed by the inhibition of the enzyme activity and confirmed at the transcriptional level by the inhibition of its expression. Although we found significant changes in the modification of interactions between monocytes and endothelial cells as well as in cytokine/chemokine release and expression that were consistent with the altered NF-κB-p65 translocation into the nucleus, we did not identify a direct interaction between LSD1 and the transcription factor. Our finding may have important implications for prevention of cardiovascular diseases at their first stage - activation of the endothelium as well as for tumor cell biology, providing evidence for the use of LSD1 inhibitors to reduce the inflammatory response, which enhances tumor tissue remodeling, angiogenesis and metastasis.


Assuntos
Células Endoteliais/metabolismo , Histona Desmetilases/metabolismo , Inflamação/metabolismo , Linhagem Celular , Histona Desmetilases/genética , Humanos , Inflamação/genética , NF-kappa B/metabolismo , Interferência de RNA , Transdução de Sinais
15.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 76(Pt 5): 892-912, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017322

RESUMO

In a search for new crystalline forms of linezolid with modified thermal properties five cocrystals of this wide range antibiotic with aromatic acids were obtained via mechanochemical grinding and analyzed with single crystal X-ray diffraction, solid-state NMR spectroscopy, powder X-ray diffraction and DSC measurements. The coformers used in this study were benzoic acid, p-hydroxybenzoic acid, protocatechuic acid, γ-resorcylic acid and gallic acid. In each of the cocrystals distinct structural features have been found, including a variable amount of water and different heterosynthons, indicating that there is more than one type of intermolecular interaction preferred by the linezolid molecule. Basing on the frequency of the observed supramolecular synthons, the proposed hierarchy of the hydrogen-bond acceptor sites of linezolid (LIN) is C=Oamide > C=Ooxazolidone > C-O-Cmorpholine > C-N-Cmorpholine > C-O-Coxazolidone. In addition, aromatic-aromatic interactions were found to be important in the stabilization of the analyzed structures. The obtained cocrystals show modified thermal properties, with four of them having melting points lower than the temperature of the phase transition from linezolid form II to linezolid form III. Such a change in this physicochemical property allows for the future application of melting-based techniques of introducing linezolid into drug delivery systems. In addition a change in water solubility of linezolid upon cocrystalization was evaluated, but only in the case of the cocrystal with protocatechuic acid was there a significant (43%) improvement in solubility in comparison with linezolid.

16.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32825053

RESUMO

Sulfur- and selenium-modified uridines present in the wobble position of transfer RNAs (tRNAs) play an important role in the precise reading of genetic information and tuning of protein biosynthesis in all three domains of life. Both sulfur and selenium chalcogens functionally operate as key elements of biological molecules involved in the protection of cells against oxidative damage. In this work, 2-thiouracil (S2Ura) and 2-selenouracil (Se2Ura) were treated with hydrogen peroxide at 1:0.5, 1:1, and 1:10 molar ratios and at selected pH values ranging from 5 to 8. It was found that Se2Ura was more prone to oxidation than its sulfur analog, and if reacted with H2O2 at a 1:1 or lower molar ratio, it predominantly produced diselenide Ura-Se-Se-Ura, which spontaneously transformed to a previously unknown Se-containing two-ring compound. Its deselenation furnished the major reaction product, a structure not related to any known biological species. Under the same conditions, only a small amount of S2Ura was oxidized to form Ura-SO2H and uracil (Ura). In contrast, 10-fold excess hydrogen peroxide converted Se2Ura and S2Ura into corresponding Ura-SeOnH and Ura-SOnH intermediates, which decomposed with the release of selenium and sulfur oxide(s) to yield Ura as either a predominant or exclusive product, respectively. Our results confirmed significantly different oxidation pathways of 2-selenouracil and 2-thiouracil.


Assuntos
Tiouracila/química , Uracila/análogos & derivados , Peróxido de Hidrogênio/química , Oxirredução , Uracila/química
17.
Biomolecules ; 10(5)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32380792

RESUMO

Antisense oligonucleotides conjugated with boron clusters (B-ASOs) have been described as potential gene expression inhibitors and carriers of boron for boron neutron capture therapy (BNCT), providing a dual-action therapeutic platform. In this study, we tested the nucleolytic stability of DNA oligonucleotides labeled with metallacarborane [(3,3'-iron-1,2,1',2'-dicarbollide)(-1)]ate [Fe(C2B9H11)2] (FESAN) against snake venom phosphodiesterase (svPDE, 3'→5'-exonuclease). Contrary to the previously observed protective effect of carborane (C2B10H12) modifications, the B-ASOs containing a metallacarborane moiety at the 5'-end of the oligonucleotide chain were hydrolyzed faster than their parent nonmodified oligomers. Interestingly, an enhancement in the hydrolysis rate was also observed in the presence of free metallacarborane, and this reaction was dependent on the concentration of the metallacarborane. Microscale thermophoresis (MST) analysis confirmed the high affinity (Kd nM range) of the binding of the metallacarborane to the proteins of crude snake venom and the moderate affinity (Kd µM range) between the metallacarborane and the short single-stranded DNA. We hypothesize that the metallacarborane complex covalently bound to B-ASO holds DNA molecules close to the protein surface, facilitating enzymatic cleavage. The addition of metallacarborane alone to the ASO/svPDE reaction mixture provides the interface to attract freely floating DNA molecules. In both cases, the local DNA concentration around the enzymes increases, giving rise to faster hydrolysis. It was experimentally shown that an allosteric effect, possibly attributable to the observed boost in the 3´â†’5´-exonucleolytic activity of snake venom phosphodiesterase, is much less plausible.


Assuntos
Compostos de Boro/química , DNA Antissenso/análogos & derivados , Diester Fosfórico Hidrolases/metabolismo , Venenos de Serpentes/enzimologia , Hidrólise , Ligação Proteica , Especificidade por Substrato
18.
Pharmaceutics ; 12(4)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326428

RESUMO

Two, well defined binary crystals with 1-Hydroxy-4,5-Dimethyl-Imidazole 3-Oxide (HIMO) as coformer and thiobarbituric acid (TBA) as well barbituric acid (BA) as Active Pharmaceutical Ingredients (APIs) were obtained by cocrystallization (from methanol) or mechanochemically by grinding. The progress of cocrystal formation in a ball mill was monitored by means of high-resolution, solid state NMR spectroscopy. The 13C CP/MAS, 15N CP/MAS and 1H Very Fast (VF) MAS NMR procedures were employed to inspect the tautomeric forms of the APIs, structure elucidation of the coformer and the obtained cocrystals. Single crystal X-ray studies allowed us to define the molecular structure and crystal packing for the coformer as well as the TBA/HIMO and BA/HIMO cocrystals. The intermolecular hydrogen bonding, π-π interactions and CH-π contacts responsible for higher order organization of supramolecular structures were determined. Biological studies of HIMO and the obtained cocrystals suggest that these complexes are not cytotoxic and can potentially be considered as therapeutic materials.

19.
Chemistry ; 26(7): 1558-1566, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31691377

RESUMO

Mechanical grinding/milling can be regarded as historically the first technology for changing the properties of matter. Mechanically activated molecular units (mechanophores) can be present in various structures: polymers, macromolecules, or small molecules. However, only polymers have been reported to effectively transduce energy to mechanophores, which induces breakage of covalent bonds. In this paper, a second possibility is presented-molecular capsules as stress-sensitive units. Mechanochemical encapsulation of fullerenes in cystine-based covalent capsules indicates that complexation takes place in the solid state, despite the fact that the capsules do not possess large enough entrance portals. By using a set of solvent-free MALDI (sf-MALDI) and solid-state NMR (ss-NMR) experiments, it has been proven that encapsulation proceeds during milling and in this process hydrazones and disulfides get activated for breakage, exchange, and re-forming. The capsules are porous and therefore prone to collapse under solvent-free conditions and their conformational rigidity promotes the collapse by the breaking of covalent bonds.

20.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 5): 803-814, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32830759

RESUMO

Apremilast (APR), an anti-psoriatic agent, easily forms isostructural cocrystals and solvates with aromatic entities, often disobeying at the same time Kitaigorodsky's rule as to the saturation of possible hydrogen-bonding sites. In this paper the reasons for this peculiar behavior are investigated, employing a joint experimental and theoretical approach. This includes the design of cocrystals with coformers having a high propensity towards the formation of both aromatic-aromatic and hydrogen-bonding interactions, determination of their structure, using solid-state NMR spectroscopy and X-ray crystallography, as well as calculations of stabilization energies of formation of the obtained cocrystals, followed by crystal structure prediction calculations and solubility measurements. The findings indicate that the stabilization energies of cocrystal formation are positive in all cases, which results from strain in the APR conformation in these crystal forms. On the other hand, solubility measurements show that the Gibbs free energy of formation of the apremilast:picolinamide cocrystal is negative, suggesting that the formation of the studied cocrystals is entropy driven. This entropic stabilization is associated with the disorder observed in almost all known cocrystals and solvates of APR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...